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Quantum manifestations of classical periodic orbits in a square billiard:
Formation of vortex lattices
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We extend the presentation of the SU~2! coherent states to analytically construct the wave function concen-
trated on high-order classical periodic orbits in a square billiard. With the constructed wave function, the
localization of the wave pattern is found to be very efficient. We also analyze the vortices arising from the
singular points of the quantum phase for the constructed coherent states. It is found that the wave interference
gives rise to the appearance of vortex lattices in the probability current density associated with the high-order
periodic orbits. Moreover, the topological charge of the vortex is in general nonintegral except for the periodic
orbits with the same winding number to the sides of the square.
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I. INTRODUCTION

In the classical-quantum interface, an area of much c
rent interest is the study of quantum states in the cas
nonintegrable classical systems@1–3#. One of the most inter-
esting phenomena is that the wave patterns of the sca
eigenstates are concentrated along unstable periodic o
instead of being randomly distributed in the system@4–6#.
Furthermore, there are some striking phenomena in o
quantum ballistic cavities associated with the wave functi
in terms of classical periodic orbits@7–9#. It is therefore
useful to make the connection between quantum wave fu
tions and classical periodic orbits for understanding
classical-quantum correspondence. In particular,
classical-quantum connection of conceptually simple cla
cal systems will be of great value for the analysis of t
quantum transport in mesoscopic systems.

The two-dimensional~2D! square billiard is one of the
simplest billiards that is completely integrable in classi
mechanics@10,11#. In a square billiard each family of peri
odic orbits can be denoted by three parameters (p,q,f),
wherep andq are two positive integers describing the num
ber of collisions with the horizontal and vertical walls, an
the parameterf(2p<f<p) that is related to the wall po
sitions of specular reflection points@12–14#. Some example
orbit families are given in Fig. 1. It can be seen that t
trajectory constitutes a single, nonrepeated orbit provi
thatp andq are relatively prime. On the other hand, ifp and
q have a common factorm, the orbit family can be recast a
the primitive periodic orbit (p/m,q/m,f/m) and m is the
number of repetitions of the primitive periodic orbit. Accor
ing to Bohr’s correspondence principle, the classical limit
a quantum system should be achieved when the quan
numbers go to infinity. However, the conventional eige
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states of a square billiard in most quantum mechanics do
manifest the properties of classical periodic orbits even in
correspondence limit of large quantum numbers.

Recently, we have analytically constructed the wave fu
tions related to the primitive periodic orbit~1,1,f! in a two-
dimensional~2D! square billiard by using the representatio
of SU~2! coherent states@15#. In this paper, we analytically
construct the wave function concentrated on high-order p
odic orbits (p,q,f) by introducing the folding property into
the SU~2! coherent states. With the SU~2! coherent state, we
find that the localization of the wave pattern is very efficie
only a few nearly degenerate eigenfunctions are already
ficient to localize wave patterns on high-order periodic
bits. This finding explains the phenomenon that the wa
patterns concentrated on periodic orbits frequently appea
the ballistic quantum dots@16,17# as well as in weakly per-
turbed integrable systems@18,19#. Furthermore, we analyze
the property of phase singularities in the quantum probab
current for the constructed wave function. The phase sin
larity is well known to give rise to the vortices in the wav
The prominent feature for the constructed wave function
the appearance of vortex lattices in the flow of probabil
current density associated with the high-order periodic
bits. The formation of vortex lattices is clearly found to b
the result of quantum interference effects. The noticea
finding is that the topological charge of the vortex is non
tegral for the states related to the periodic orbit (p,q,f) with
pÞq.

II. WAVE FUNCTIONS ASSOCIATED WITH CLASSICAL
PERIODIC ORBITS

Recently, we used the presentation of the SU~2! coherent
state to analytically construct a wave function that is w
localized on the corresponding classical periodic orb
~1,1,f! in a 2D quantum square billiard. Our construction
the analog of the one used in Refs.@20# and@21# to construct
eigenstates in the 2D quantum harmonic oscillator, optima
localized on classical elliptic orbits. As in the Schwing
©2002 The American Physical Society10-1



-

il-

.

te

in

its.

of
ec-
s a
.
gen-

s o

ig.

Y. F. CHEN, K. F. HUANG, AND Y. P. LAN PHYSICAL REVIEW E66, 066210 ~2002!
representation of the SU~2! algebra, the wave function asso
ciated with the periodic orbit~1,1,f! is given by

CN~x,y;f!5
1

2N/2 (
K50

N S N
K D 1/2

eiKfcK,N2K~x,y!, ~1!

wherecK,N2K(x,y) is the eigenstates of the 2D square b
liard,

cK,N2K~x,y!5
2

a
sinF ~K11!

px

a GsinF ~N2K11!
py

a G ,
~2!

anda is the length of the square boundary. As seen in Fig
the high-order periodic orbits (p,q,f) can be folded to be a
primitive cell ~1,1,f!. Using this folding property and the
periodicity of the sine function, the wave function associa
with high-order periodic orbits (p,q,f) can be analytically
expressed as

FIG. 1. Some classical periodic orbits (p,q,f). p andq corre-
sponding to the winding numbers of the orbit parallel to the side
the square. The periodic orbits are in terms of the parameterf that
is related to the wall positions of specular reflection points.
06621
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CN
p,q~x,y;f!5

1

2N/2 (
K50

N S N
K D 1/2

eiKfcpK,q~N2K !~x,y!

5
~2/a!

2N/2 (
K50

N S N
K D 1/2

eiKf sinFp~K11!
px

a G
3sinFq~N2K11!

py

a G . ~3!

Figure 2 depicts the wave patterns ofuCN
p,q(x,y;f)u2 with

N526 associated with the classical trajectories displayed
Fig. 1. It can be seen that the distributions ofuCN

p,q(x,y;f)u2

are in good agreement with the classical periodic orb
Moreover, the behavior ofuCN

p,q(x,y;f)u2 illustrates geo-
metrically Bohr’s correspondence principle: the velocity
the classical particle is at a minimum at the specular refl
tion points of the motion, and therefore the distribution ha
peak at these points. Note that the wave functions in Eqs~1!
and~3! are generally not stationary states because the ei

f

FIG. 2. The wave patterns ofuCN
p,q(x,y;f)u2 from Eq. ~3! for

N526 corresponding to the classical trajectories displayed in F
1.
0-2
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state components are not degenerate for the HamiltoniaH.
However, it can be easily shown thatDH/^H& for N>2 is
inversely proportional toN. Therefore,DH/^H&→0 as N
→` for the wave functionCN

p,q(x,y;f). Namely, the coher-
ent states in Eqs.~1! and ~3! are stationary states in th
classical limit. Note that the special statesC1

p,p(x,y;f) that
contain two degenerate eigenstates ofc0,p(x,y) and
cp,0(x,y) are stationary states. As described in the followi
section, theC1

p,p(x,y;f) states are pedagogically useful f
understanding the formation of vortex patterns in the qu
tum probability current.

To understand how the parameterf is determined for the
different orbits, we use the identity of sinu5(eiu2e2iu)/2i to
rewrite the Eq.~3! as

CN
p,q~x,y;f!5

~2/a!

2N/2 $eiQ1~x,y!F1~x,y;f!

1e2 iQ1~x,y!F2~x,y;f!

2eiQ2~x,y!G1~x,y;f!

2e2 iQ2~x,y!G2~x,y;f!%, ~4!

where

F6~x,y;f!5 (
K50

N S N
K D 1/2

exp$ iK @ f 2~x,y!6f#%, ~5!

G6~x,y;f!5 (
K50

N S N
K D 1/2

exp$ iK @ f 1~x,y!6f#%, ~6!

and

f 6~x,y!5
pp

a
x6

qp

a
y,

~7!

Q6~x,y!5
pp

a
x6~N11!

qp

a
y.

Since the property of the functionsF6(x,y;f) and
G6(x,y;f) is similar to theDirichlet kernel, the wave func-
tion has the maximum value wheneverf 6(x,y)6f52np
wheren is an integer. It can be found that the lines of equ
tion f 6(x,y)6f52np coincide with the classical trajecto
ries. Therefore, the relationship between the parameterf and
the periodic orbits is manifest.

Although the number of eigenstates used in the cohe
stateCN

p,q(x,y;f) is N11, the number of dominant eigen
states for wave localization is rather small for high-ord
states. To manifest the efficiency of wave localization,
modify CN

p,q(x,y;f) to define a partially coherent state as
06621
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CN,M
p,q ~x,y;f!5

~2/a!

F(K5J
N2JS N

K D G1/2 (
K5J

N2J S N
K D 1/2

eiKf

3sinFp~K11!
px

a G
3sinFq~N2K11!

py

a G , ~8!

where the indexM5N22J11 represents the number o
eigenstates used in the stateCN,M

p,q (x,y;f). Figure 3 displays
the wave patterns ofuCN,M

p,q (x,y;f)u2 with M55 and N
526 corresponding to the classical periodic orbits shown
Fig. 1. It is clear that only five eigenstates are already su
cient to localize the wave patterns on the classical traje
ries, even for high-order periodic orbits. Since the partia
coherent statesCN,M

p,q (x,y;f), in general, contain only a few
nearly degenerate eigenstates, they often become the e

FIG. 3. The wave patterns ofuCN,M
p,q (x,y;f)u2 from Eq. ~8! for

M55 and N526 corresponding to the classical periodic orb
shown in Fig. 1.
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eigenstates in the weakly perturbed 2D square billia
@16,17# and usually appear in the ballistic quantum dot
resonances@18,19#. The present analysis indicates that t
wave function obtained as a linear superposition of a f
nearly degenerate eigenstates can provide a more phy
description of a phenomenon than the true eigenstates in
soscopic systems. Recently, Akiset al. @22# have shown how
the scarred wave functions seen in open quantum dots
be interpreted as arising from single eigenstates of clo
billiards. This finding is in good agreement with the prese
conclusion. Also, Hufnagelet al. @23# have shown that al-
though the eigenstates of mixed-phase-space billiards ca
nore the classical phase-space structures, semiclassicall
pected states and eigenstates will again coincide if
symmetry of the system is weakly perturbed.

III. FORMATION OF VORTEX LATTICES

Vortices are responsible for many observable phenom
known mainly to occur in macroscopic quantum systems,
example, superconductors or superfluids@24–26#. The order
parameter equation in the study of these phenomena is
Ginzburg-Landau or Gross-Pitaevskii equation. The non
ear character of the modeling equation greatly complica
the analysis of the solution. However, as pointed out alre
by Dirac @27#, the vortices arising from the singular points
the quantum phase also manifest themselves in the li
Schrödinger equation. Recent works show that the vor
problems play an important role in quantum mechanics@28–
30#. Therefore, it is of great interest to analyze the vor
behavior for the present wave function.

For analyzing the property of phase singularities ass
ated with the classical periodic orbits, it will be convenient
separateCN

p,q(x,y;f) into its real and imaginary parts,

CN
p,q~x,y;f!5FN

p,q~x,y;f!1 iJN
p,q~x,y;f!, ~9!

where

FN
p,q~x,y;f!5

~2/a!

2N/2 (
K50

N S N
K D 1/2

cos~Kf!sin

3Fp~K11!
px

a GsinFq~N2K11!
py

a G ,
~10!

JN
p,q~x,y;f!5

~2/a!

2N/2 (
K50

N S N
K D 1/2

sin~Kf!sin

3Fp~K11!
px

a GsinFq~N2K11!
py

a G .
~11!

In terms of the probability densityr(x,y) and the phase
distribution x(x,y), the probability current density is ana
lytically given by @31#
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JY~x,y!5
\

m
r~x,y!¹x~x,y!,

r~x,y!5uCN
p,q~x,y;f!u2, ~12!

x~x,y!5tan21@FN
p,q~x,y;f!/JN

p,q~x,y;f!#.

Note that the coherent stateCN
p,q(x,y;f) is a standing wave

and has no vortices whenf56np and n is an integer. In
other words, the vortices can exist in the coherent s
CN

p,q(x,y;f) when fÞ6np. Hereafter we focus on the
case offÞ6np, unless otherwise specified.

Using Eqs. ~9!–~12!, the probability current densitie
have been calculated. Figure 4 shows the calculated re
for the wave functions displayed in Fig. 2. The direction
probability flow corresponds to the classical rays shown
Fig. 1. Figure 5 shows the calculated results for the perio
orbit ~4,4,p/2! for the cases ofN51, 5, and 25. It can be
seen that the order of the singularity is proportional to
index N. The order of the singularity, denoted also as t

FIG. 4. The calculated results for the probability current den
ties corresponding to the wave functions displayed in Fig. 2.
0-4
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topological charge of the vortex, is calculated as the circu
tion of the phase gradient using a small closed curve en
cling the singularity

Q5
1

2p R ¹x•drY. ~13!

Substituting Eqs.~10!–~12! into Eq. ~13!, the topological
charge for the coherent stateCN

p,q(x,y;f) is found to be

Q56
p21q2

2pq
N. ~14!

It can be seen that the topological charge is proportiona
the indexN. In the case ofp5q, the topological charge is a
integer and equal to6N. Although the coherent state
C1

p,p(x,y;f) hardly display the classical trajectories, th
are stationary states in a 2D quantum square billiard, as m

FIG. 5. The calculated results for the probability current den
ties corresponding to the periodic orbit~4,4,p/2! of the coherent
states withN51, 5, and 25.
06621
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tioned in Sec. II. From Eq.~14!, the topological charge of the
stationary statesC1

p,p(x,y;f) is equal to61. Even though
the present result is based on the linear Schro¨dinger equa-
tion, it is interesting to notice that only vortex states wi
Q561 are stable in the framework of the dissipati
Ginzburg-Landau equation@32,33#.

On the other hand, the topological charge is noninteg
when pÞq. The nonintegral topological charge arises fro
the fact that the primitive periodic orbit (p/m,q/m,f/m) for
pÞq has at least one intersection at which the occurrenc
the wave interference leads to the topological charge to
nonintegral@34#. However, forp5q the primitive periodic
orbit is ~1,1,f! and the intersection number for each traje
tory is actually zero; therefore the quantization of the top
logical charge is the same as that of simple trajectories w
out intersections. The evidence for a fractional topologi
charge has been studied in the fields of high-energy phy
@34,35# and nonlinear physics@36#. Finally, the nonzero cir-
culation also comes out in the partially coherent states
are defined in Eq.~8!. Figure 6 shows the calculated prob
ability current density for the partially coherent sta
C26,5

3,2 (x,y;f). The structure of the vortices can be clear
seen, although only five eigenstates are used to localize
wave pattern on the classical trajectory.

IV. CONCLUSIONS

We have extended the SU~2! coherent states to analyt
cally construct the wave function associated with the hig
order periodic orbits (p,q,f). We modify the constructed
coherent state to investigate the efficiency of wave locali
tion. It is found that only a few nearly degenerate eigensta
is already sufficient to localize wave patterns on high-or
periodic orbits. The high efficiency of wave localization co
firms that the wave patterns related to periodic orbits usu

i-

FIG. 6. The calculated results for the probability current den
ties corresponding to the partially coherent stateC26,5

3,2 (x,y;f).
0-5
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appear in the weakly perturbed integrable systems as
as in the ballistic quantum dots. Moreover, the property
phase singularities in the quantum probability current
analyzed. The singular points of the quantum phase is fo
to form the vortex lattices in the probability current dens
related to the high-order periodic orbits. An intere
ing result is that the topological charge of vortices
cs

Y.

.

. B
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nonintegral for the quantum states related to the perio
orbit (p,q,f) with pÞq.
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